Bitumen Penetration Grade 80-100 PUB-LTD is a dynamic and multi-faceted limited company based in Iran actively involved in manufacturing procurement distribution and export of various grades of oxidized bitumen & penetration Bitumen as bitumen 60/70,…
NaOH
What is NaOH?
NaOH at room temperature, is a white crystalline odorless solid that absorbs moisture from the air. It is a manufactured substance. When dissolved in water or neutralized with acid it liberates substantial heat, which may be sufficient to ignite combustible materials. Sodium hydroxide is very corrosive. It is generally used as a solid or a 50% solution.
Other common names include caustic soda and lye. Sodium hydroxide is used to manufacture soaps, rayon, paper, explosives, dyestuffs, and petroleum products. It is also used in processing cotton fabric, laundering and bleaching, metal cleaning and processing, oxide coating, electroplating, and electrolytic extracting. It is commonly present in commercial drain and oven cleaners.
NaOH Physical properties:
Pure sodium hydroxide is a colorless crystalline solid that melts at 318 °C without decomposition. It is highly soluble in water, with a lower solubility in polar solvents such as ethanol and methanol. NaOH is insoluble in ether and other non-polar solvents.
Similar to the hydration of sulfuric acid, dissolution of solid sodium hydroxide in water is a highly exothermic reaction. where a large amount of heat is liberated, posing a threat to safety through the possibility of splashing. The resulting solution is usually colorless and odorless. As with other alkaline solutions, it feels slippery with skin contact due to the process of saponification that occurs between NaOH and natural skin oils.
Chemical properties:
Reaction with acids:
Sodium hydroxide reacts with protic acids to produce water and the corresponding salts. For example, when sodium hydroxide reacts with hydrochloric acid, sodium chloride is formed:
NaOH(aq) + HCl(aq) → NaCl(aq) + H2O(l)
In general, such neutralization reactions are represented by one simple net ionic equation:
OH−(aq) + H+(aq) → H2O(l)
This type of reaction with a strong acid releases heat, and hence is exothermic. Such acid-base reactions can also be used for titrations. However, sodium hydroxide is not used as a primary standard because it is hygroscopic and absorbs carbon dioxide from air.
Reaction with acidic oxides:
Sodium hydroxide also reacts with acidic oxides, such as sulfur dioxide. Such reactions are often used to “scrub” harmful acidic gases (like SO2 and H2S) produced in the burning of coal and thus prevent their release into the atmosphere. For example,
2 NaOH + SO2 → Na2SO3 + H2O
Reaction with amphoteric metals and oxides:
Glass reacts slowly with aqueous sodium hydroxide solutions at ambient temperatures to form soluble silicates. Because of this, glass joints and stopcocks exposed to sodium hydroxide have a tendency to “freeze”. Flasks and glass-lined chemical reactors are damaged by long exposure to hot sodium hydroxide, which also frosts the glass. Sodium hydroxide does not attack iron since iron does not have amphoteric properties (i.e., it only dissolves in acid, not base). A few transition metals, however, may react vigorously with sodium hydroxide.
In 1986, an aluminium road tanker in the UK was mistakenly used to transport 25% sodium hydroxide solution, causing pressurization of the contents and damage to the tanker. The pressurization was due to the hydrogen gas which is produced in the reaction between sodium hydroxide and aluminium:
2 Al + 2 NaOH + 6 H2O → 2 NaAl(OH)4 + 3 H2